RapiClear®,

Maximize Signal-to-Noise Ratio

Request free sample, quote or ask a question

Reference

RapiClear 1.47

Human

1.Stewart BJ et al. Spatiotemporal immune zonation of the human kidney. Science (2019). https://doi.org/10.1126/science.aat5031

2.Yang H et al. Microvascular Network and Its Endothelial Cells in the Human Iris. Curr Eye Res (2017). https://doi.org/10.1080/02713683.2017.1379544

Organoids

1.Eenjes E et al. Functional Characterization and Visualization of Esophageal Fibroblasts Using Organoid Co-Cultures. J Vis Exp (2023). https://doi.org/10.3791/64905

2.Loussert-Fonta C et al. Opening the black box of traumatic brain injury: a holistic approach combining human 3D neural tissue and an in vitro traumatic brain injury induction device. Front Neurosci (2023). https://doi.org/10.3389/fnins.2023.1189615

3.Hammoudi N et al. Autologous organoid co-culture model reveals T cell-driven epithelial cell death in Crohn’s Disease. Front Immunol (2022). https://doi.org/10.3389/fimmu.2022.1008456

4.Kerhervé M et al. Neuropilin-1 modulates the 3D invasive properties of glioblastoma stem-like cells. Front Cell Dev Biol (2022). https://doi.org/10.3389/fcell.2022.9815834

5.van Asperen JV, et al. Determining glioma cell invasion and proliferation in ex vivo organotypic mouse brain slices using whole-mount immunostaining and tissue clearing. STAR Protoc (2022). https://doi.org/10.1016/j.xpro.2022.101703

6.Garreta E, et al. Protocol for SARS-CoV-2 infection of kidney organoids derived from human pluripotent stem cells. STAR Protoc (2022). https://doi.org/10.1016/j.xpro.2022.101872

7.Zunino et al. Multiplane Encoded Light-Sheet Microscopy for Enhanced 3D Imaging. ACS Photonics (2021). https://doi.org/10.1021/acsphotonics.1c01401

8.Sahni G et al. A Micropatterned Human-Specific Neuroepithelial Tissue for Modeling Gene and Drug-Induced Neurodevelopmental Defects. Adv Sci (2021). dx.doi.org/10.1002/advs.202001100

9.Govindan S et al. Mass Generation, Neuron Labeling, and 3D Imaging of Minibrains. Front Bioeng Biotechnol (2021). dx.doi.org/10.3389/fbioe.2020.582650

10.Lallemant L et al. Comparison of different clearing and acquisition methods for 3D imaging of murine intestinal organoids. J Biol Methods (2020). jbmethods.org/jbm/article/view/334/314

Chip

1.Karzbrun E et al. Human neural tube morphogenesis in vitro by geometric constraints. Nature (2021). https://doi.org/10.1038/s41586-021-04026-9

2.Karzbrun E et al. Recapitulating neural tube morphogenesis with human pluripotent stem cells. Protocol Exchange (2021). https://doi.org/10.21203/rs.3.pex-1606/v1

Mouse

1.Datta MS et al. Whole-brain mapping reveals the divergent impact of ketamine on the dopamine system. Cell Rep (2023). https://doi.org/10.1016/j.celrep.2023.113491

2.Ren L et al. Adjudin improves beta cell maturation, hepatic glucose uptake and glucose homeostasis. Diabetologia (2023). https://doi.org/10.1007/s00125-023-06020-4

3.Tatsukawa T et al. NG2-positive pericytes regulate homeostatic maintenance of slow-type skeletal muscle with rapid myonuclear turnover. Stem Cell Res Ther (2023). https://doi.org/10.1186/s13287-023-03433-1

4.Yu PK et al. Quantitative study of spatial and temporal variation in retinal capillary network perfusion in rat eye by in vivo confocal imaging. Sci Rep (2023). https://doi.org/10.1038/s41598-023-44480-1

5.Yang H et al. Region-related and layer-specific permeability of the iris vasculature with morphological mechanism: A novel understanding of blood-aqueous barrier. Exp Eye Res (2023). https://doi.org/10.1016/j.exer.2023.109445

6.Wang QQ et al. Comparative localization of colorectal sensory afferent central projections in the mouse spinal cord dorsal horn and caudal medulla dorsal vagal complex. J Comp Neurol (2023). https://doi.org/10.1002/cne.25546

7.Kuo CC et al. Carbachol increases locus coeruleus activation by targeting noradrenergic neurons, inhibitory interneurons and inhibitory synaptic transmission. Eur J Neurosci (2023). https://10.1101/2023.04.12.536506

8.Parker A et al. Absence of Bacteria Permits Fungal Gut-To-Brain Translocation and Invasion in Germfree Mice but Ageing Alone Does Not Drive Pathobiont Expansion in Conventionally Raised Mice. Front Aging Neurosci (2022). https://doi.org/10.3389/fnagi.2022.828429

9.Takei Y et al. Alteration in peritoneal cells with the chemokine CX3CL1 reverses age-associated impairment of recognition memory. Geroscience (2022). https://doi.org/10.1007/s11357-022-00579-3

10.Osanai Y et al. Dark Rearing in the Visual Critical Period Causes Structural Changes in Myelinated Axons in the Adult Mouse Visual Pathway. Neurochem Res (2022). https://doi.org/10.1007/s11064-022-03689-8

11.van Asperen JV et al. Determining glioma cell invasion and proliferation in ex vivo organotypic mouse brain slices using whole-mount immunostaining and tissue clearing. STAR Protoc (2022). https://doi.org/10.1016/j.xpro.2022.101703

12.Uceda-Castro R et al. GFAP splice variants fine-tune glioma cell invasion and tumour dynamics by modulating migration persistence. Sci Rep (2022). https://doi.org/10.1038/s41598-021-04127-5

13.Zhai J et al. Loss of CaV1.3 RNA editing enhances mouse hippocampal plasticity, learning, and memory. Proc Natl Acad Sci USA (2022). https://doi.org/10.1073/pnas.2203883119

14.Chung CL et al. Plug-and-play adaptive optics for two photon high-speed volumetric imaging. J. Phys. Photonics (2022). https://doi.org/10.1088/2515-7647/ac6120

15.Li Z et al. Multi-species meta-analysis identifies transcriptional signatures associated with cardiac endothelial responses in the ischaemic heart. Cardiovasc Res (2022). https://doi.org/10.1093/cvr/cvac151

16.Matsuo R et al. Ninjurin1 Deletion in NG2-Positive Pericytes Prevents Microvessel Maturation and Delays Wound Healing. JID Innov (2022). https://doi.org/10.1016/j.xjidi.2022.100141

17.Cabeza-Cabrerizo M et al. Recruitment of dendritic cell progenitors to foci of influenza A virus infection sustains immunity. Sci Immunol (2021). https://doi.org/10.1126/sciimmunol.abi9331

18.Bauer J et al. Limited functional convergence of eye-specific inputs in the retinogeniculate pathway of the mouse. Neuron (2021).dx.doi.org/10.1016/j.neuron.2021.05.036

19.Georgiadis M et al. Nanostructure-specific X-ray tomography reveals myelin levels, integrity and axon orientations in mouse and human nervous tissue. Nat Commun (2021).doi.org/10.1038/s41467-021-22719-7

20.Refaeli R et al. Features of hippocampal astrocytic domains and their spatial relation to excitatory and inhibitory neurons. Glia (2021).dx.doi.org/10.1002/glia.24044

21.Chu CF et al. Examination of Fas-Induced Apoptosis of Murine Thymocytes in Thymic Tissue Slices Reveals That Fas Is Dispensable for Negative Selection. Front Cell Dev Biol. (2020).dx.doi.org/10.3389/fcell.2020.586807

22.Wu RN et al. Firing activity of locus coeruleus noradrenergic neurons decreases in necdin-deficient mice, an animal model of Prader-Willi syndrome. J Neurodev Disord. (2020).dx.doi.org/10.1186/s11689-020-09323-4

23.Bellomo A et al. Reticular Fibroblasts Expressing the Transcription Factor WT1 Define a Stromal Niche that Maintains and Replenishes Splenic Red Pulp Macrophages. Immunity (2020).https://doi.org/10.1016/j.immuni.2020.06.008

24.Etzerodt A et al. Tissue-resident Macrophages in Omentum Promote Metastatic Spread of Ovarian Cancer. J Exp Med (2020).https://doi.org/10.1084/jem.20191869

25.Mondor I et al. Lymphatic Endothelial Cells Are Essential Components of the Subcapsular Sinus Macrophage Niche. Immunity (2019). http://doi.org/10.1016/j.immuni.2019.04.002

26.Grundy L et al. Translating peripheral bladder afferent mechanosensitivity to neuronal activation within the lumbosacral spinal cord of mice. Pain (2019). http://doi.org/10.1097/j.pain.0000000000001453

27.Chakarov S et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science (2019). https://doi.org/10.1126/science.aau0964

28.Cabeza-Cabrerizo M et al. Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate mapping of DC progenitors. Sci Immunol (2019). https://doi.org/10.1126/sciimmunol.aaw1941

29.Grundy L et al. Chronic linaclotide treatment reduces colitis-induced neuroplasticity and reverses persistent bladder dysfunction. JCI Insight (2018). https://doi.org/10.1172/jci.insight.121841

30.Atlan G et al. The Claustrum Supports Resilience to Distraction. Curr Biol (2018). https://doi.org/10.1016/j.cub.2018.06.068

31.Baranska A et al. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J Exp Med (2018). https://doi.org/10.1084/jem.20171608

32.Mondor I et al. Clonal Proliferation and Stochastic Pruning Orchestrate Lymph Node Vasculature Remodeling. Immunity (2016). http://dx.doi.org/10.1016/j.immuni.2016.09.017

33.Seiradake E et al. FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. Neuron (2014). http://dx.doi.org/10.1016/j.neuron.2014.10.008

Arthropods

1.Dutta D et al. A defect in mitochondrial fatty acid synthesis impairs iron metabolism and causes elevated ceramide levels. Nat Metab (2023).  http://dx.doi.org/10.1038/s42255-023-00873-0

2.Bademosi AT et al. EndophilinA-dependent coupling between activity-induced calcium influx and synaptic autophagy is disrupted by a Parkinson-risk mutation. Neuron (2023).  http://dx.doi.org/10.1016/j.neuron.2023.02.001

3.Praschberger R et al. Neuronal identity defines α-synuclein and tau toxicity. Neuron (2023).  http://dx.doi.org/10.1016/j.neuron.2023.02.033

4.Diegmiller R et al. Fusome topology and inheritance during insect gametogenesis. PLoS Comput Biol (2023).  http://dx.doi.org/10.1371/journal.pcbi.1010875

5.Hakes et al. Plasticity of Drosophila germ granules during germ cell development. PLoS Biol (2023).  http://dx.doi.org/10.1371/journal.pbio.3002069

6.Ravenscroft TA et al. The Voltage-Gated Sodium Channel in Drosophila, Para, Localizes to Dendrites As Well As Axons in Mechanosensitive Chordotonal Neurons. eNeuro (2023).  http://dx.doi.org/10.1523/ENEURO.0105-23.2023

7.Chung HL et al. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab (2023).  http://dx.doi.org/10.1016/j.cmet.2023.03.022

8.Rillich B et al. On latches in biological systems: a comparative morphological and functional study of the retinaculum and the dens lock in Collembola. Front Zool (2023).  http://dx.doi.org/10.1186/s12983-023-00491-2

9.Tepe B et al. Bi-allelic variants in INTS11 are associated with a complex neurological disorder. Am J Hum Genet (2023).  http://dx.doi.org/10.1016/j.ajhg.2023.03.012

10.Jans K et al. Dietary lithium stimulates female fecundity in Drosophila melanogaster. Biofactors (2023).  http://dx.doi.org/10.1002/biof.2007

11.Steinhoff POM et al. Comparative neuroanatomy of the central nervous system in web-building and cursorial hunting spiders. J Comp Neurol (2023).  http://dx.doi.org/10.1002/cne.25554

12.Lin HH et al. A nutrient-specific gut hormone arbitrates between courtship and feeding. Nature (2022).  http://dx.doi.org/10.1038/s41586-022-04408-7

13.Li S et al. Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63. Nature Commun (2022).  https://doi.org/10.1038/s41467-022-31253-z

14.Wang L et al. Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. Sci Adv (2022).  https://doi.org/10.1126/sciadv.abn3326

15.Hernández K et al. Dscam1 overexpression impairs the function of the gut nervous system in Drosophila. Dev Dyn (2022).  https://doi.org/10.1002/dvdy.554

16.Oliveira FGL. On springtails (Hexapoda: Collembola): a morphofunctional study of the jumping apparatus. Front Zool (2022).  https://doi.org/10.1186/s12983-022-00463-y

17.Farnworth MS et al. An atlas of the developing Tribolium castaneum brain reveals conservation in anatomy and divergence in timing to Drosophila melanogaster. J Comp Neurol (2022).  https://doi.org/10.1002/cne.25335

18.Alsous JI et al. Clonal dominance in excitable cell networks. Nature Physics (2021).  https://doi.org/10.1038/s41567-021-01383-0

19.Diegmiller R et al. Size scaling in collective cell growth. Development (2021).  https://doi.org/10.1242/dev.199663

21.Yang DM et al. Monitoring the Heavy Metal Lead Inside Living Drosophila with a FRET-Based Biosensor. Sensors (Basel) (2021). https://doi.org/10.3390/s20061712

21.Doherty CA et al. Coupled oscillators coordinate collective germline growth. Dev Cell (2021).  http://dx.doi.org/10.1016/j.devcel.2021.02.015

22.Alsous JI et al. Dynamics of hydraulic and contractile wave-mediated fluid transport during Drosophila oogenesis. Proc Natl Acad Sci U S A (2021). http://dx.doi.org/10.1073/pnas.2019749118

23.Ravenscroft TA et al. Drosophila Voltage-Gated Sodium Channels Are Only Expressed in Active Neurons and Are Localized to Distal Axonal Initial Segment-like Domains. J Neurosci (2020). http://dx.doi.org/10.1523/JNEUROSCI.0142-20.2020

24.Chung HL et al. Loss- Or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms. Neuron (2020). https://doi.org/10.1016/j.neuron.2020.02.021

25.Ye H et al. Retromer Subunit, VPS29, Regulates Synaptic Transmission and Is Required for Endolysosomal Function in the Aging Brain. eLife (2020). https://doi.org/10.7554/eLife.51977

26.Göpel T et al. The Circulatory System of Penaeus Vannamei Boone, 1931-Lacunar Function and a Reconsideration of the “Open vs. Closed System” Debate. J Morphol (2020). https://doi.org/10.1002/jmor.21117

27.Yang DM et al. Monitoring the Heavy Metal Lead Inside Living Drosophila with a FRET-Based Biosensor. Sensors (Basel) (2020). https://doi.org/10.3390/s20061712

28.Frase T et al. The Brain and the Corresponding Sense Organs in Calanoid Copepods – Evidence of Vestiges of Compound Eyes. Arthropod Struct Dev (2020). https://doi.org/10.1016/j.asd.2019.100902

29.Kalke P et al. From swimming towards sessility in two metamorphoses – the drastic changes in structure and function of the nervous system of the bay barnacle Amphibalanus improvisus (Crustacea, Thecostraca, Cirripedia) during development. Contributions to Zoology (2020). https://doi.org/10.1163/18759866-bja10003

30.Guo H et al. Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nat Commun (2019). http://dx.doi.org/10.1038/s41467-019-12435-8

31.Kurtz P et al. Drosophila p53 directs non-apoptotic programs in postmitotic tissue. Mol Biol Cell (2019).https://doi.org/10.1091/mbc.E18-12-0791

32.Benavides LR et al. Phylogeny, evolution and systematic revision of the mite harvestman family Neogoveidae (Opiliones Cyphophthalmi). Invertebrate Systematics (2019). https://doi.org/10.1071/IS18018

33.Göpel T et al. Morphological description, character conceptualization and the reconstruction of ancestral states exemplified by the evolution of arthropod hearts. PLoS One (2018). https://doi.org/10.1371/journal.pone.0201702

34.Marcogliese PC et al. IRF2BPL Is Associated with Neurological Phenotypes. Am J Hum Genet (2018). https://doi.org/10.1016/j.ajhg.2018.07.006

35.Lin G et al. Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain. Cell Metab (2018). https://doi.org/10.1016/j.cmet.2018.05.019

36.Li-Kroeger D et al. An expanded toolkit for gene tagging based on MiMIC and scarless CRISPR tagging in Drosophila. eLife (2018). https://doi.org/10.7554/eLife.38709.001

37.Liu N et al. Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Hum Mol Genet (2018). https://doi.org/10.1093/hmg/ddy146

38.Lee PT et al. A gene-specific T2A-GAL4 library for Drosophila. eLife (2018). https://doi.org/10.7554/eLife.35574

39.Lee PT et al. A kinase-dependent feedforward loop affects CREBB stability and long term memory formation. eLife (2018). https://doi.org/10.7554/eLife.33007.001

40.Myers L et al. The Drosophila Ret gene functions in the stomatogastric nervous system with the Maverick TGFβ ligand and the Gfrl co-receptor. Development. (2018). http://dx.doi.org/10.1242/dev.157446

41.Frank DD et al. Early Integration of Temperature and Humidity Stimuli in the Drosophila Brain. Curr Biol (2017). http://dx.doi.org/10.1016/j.cub.2017.06.077

42.Enjin A et al. Humidity Sensing in Drosophila. Curr Biol (2017). http://dx.doi.org/10.1016/j.cub.2016.03.049

43.Osterfield M et al. Diversity of epithelial morphogenesis during eggshell formation in drosophilids. Development (2015). http://dev.biologists.org/lookup/doi/10.1242/dev.119404

44.Nagarkar-Jaiswal S et al. A library of MiMICs allows tagging of genes and reversible spatial and temporal knockdown of proteins in Drosophila. eLife (2015). http://dx.doi.org/10.7554/eLife.05338

Porcine

1.Yang H et al. Quantitative study of the microvasculature and its endothelial cells in the porcine iris. Exp Eye Res (2015). http://dx.doi.org/10.1016/j.exer.2015.02.006

2.Yang H et al. Intracellular cytoskeleton and junction proteins of endothelial cells in the porcine iris microvasculature. Exp Eye Res (2015). http://dx.doi.org/10.1016/j.exer.2015.08.025

Zebrafish

1.Steventon B et al. Species-specific contribution of volumetric growth and tissue convergence to posterior body elongation in vertebrates. Development (2016). http://dev.biologists.org/lookup/doi/10.1242/dev.126375