RapiClear®,

Maximize Signal-to-Noise Ratio

Request free sample, quote or ask a question

Reference

RapiClear 1.49

Biomaterial

1.Guan S et al. Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation. Nat Protoc (2023). https://doi.org/10.1038/s41596-023-00824-9

2.Dadashzadeh A et al. Mind the mechanical strength: tailoring a 3D matrix to encapsulate isolated human preantral follicles. Hum Reprod Open
(2023). https://doi.org/10.1093/hropen/hoad004

3.Gao L et al. Free-Standing Nanofilm Electrode Arrays for Long-Term Stable Neural Interfacings. Advanced Materials (2021). https://doi.org/10.1002/adma.202107343

4.Malakpour-Permlid A et al. A novel 3D polycaprolactone high-throughput system for evaluation of toxicity in normoxia and hypoxia. Toxicol Rep (2021). https://doi.org/10.1016/j.toxrep.2021.03.015

5.Malakpour-Permlid A et al. Identification of extracellular matrix proteins secreted by human dermal fibroblasts cultured in 3D electrospun scaffolds. Sci Rep (2021). https://doi.org/10.1038/s41598-021-85742-0

Human

1.Matschke J et al. Young COVID-19 Patients Show a Higher Degree of Microglial Activation When Compared to Controls. Front Neurol (2022). http://dx.doi.org/10.3389/fneur.2022.908081

2.Ouni E et al. Proteome-wide and matrisome-specific atlas of the human ovary computes fertility biomarker candidates and open the way for precision oncofertility. Matrix Biol (2022). http://dx.doi.org/10.1016/j.matbio.2022.03.005

3.Yokota M et al. Trehangelins ameliorate inflammation-induced skin senescence by suppressing the epidermal YAP-CCN1 axis. Sci Rep (2022). http://dx.doi.org/10.1038/s41598-022-04924-6

4.Tohgasaki T et al. Evaluation of elastin fibres in young and aged eyelids and abdominal skin using computational 3D structural analysis. Skin Health and Disease (2021). https://doi.org/10.1002/ski2.58

5.Blondy T et al. Involvement of the M-CSF/IL-34/CSF-1R pathway in malignant pleural mesothelioma. J Immunother Cancer (2020). http://dx.doi.org/10.1136/jitc-2019-000182

6.Hulsmans M et al. Macrophages Facilitate Electrical Conduction in the Heart. Cell (2017). http://dx.doi.org/10.1016/j.cell.2017.03.050

Organoids

1.Hansen SL et al. An organoid-based CRISPR-Cas9 screen for regulators of intestinal epithelial maturation and cell fate. Sci Adv (2023). http://dx.doi.org/10.1126/sciadv.adg4055

2.Shabani K et al. The temporal balance between self-renewal and differentiation of human neural stem cells requires the amyloid precursor protein. Sci Adv (2023). http://dx.doi.org/10.1126/sciadv.add5002

3.Lam MS et al. Unveiling the Influence of Tumor Microenvironment and Spatial Heterogeneity on Temozolomide Resistance in Glioblastoma Using an Advanced Human In Vitro Model of the Blood-Brain Barrier and Glioblastoma. Small (2023). http://dx.doi.org/10.1002/smll.202302280

4.Yu LY et al. Evaluating the biological effectiveness of boron neutron capture therapy by using microfluidics-based pancreatic tumor spheroids. Analyst (2023). http://dx.doi.org/10.1039/d2an01812h

5.Batalha S et al. Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Front Immunol (2023). http://dx.doi.org/10.3389/fimmu.2023.1267621

6.Blondy T et al. Impact of RAFT chain transfer agents on the polymeric shell density of magneto-fluorescent nanoparticles and their cellular uptake. Nanoscale (2022). http://dx.doi.org/10.1039/d1nr06769a

7.Wan Z et al. New Strategy for Promoting Vascularization in Tumor Spheroids in a Microfluidic Assay. Adv Healthc Mater (2022). http://dx.doi.org/10.1002/adhm.202201784

8.Hörberg CJ et al. Spontaneous Cell Cluster Formation in Human iPSC-Derived Neuronal Spheroid Networks Influences Network Activity. eNeuro (2022). http://dx.doi.org/10.1523/ENEURO.0143-22.2022

9.Dalgin G et al. Developmental defects and impaired network excitability in a cerebral organoid model of KCNJ11 p.V59M-related neonatal diabetes. Sci Rep (2021). https://doi.org/10.1038/s41598-021-00939-7

Mouse

1.Ugur M et al. Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks. Immunity (2023). https://doi.org/10.1016/j.immuni.2023.06.020

2.Pereira da Costa M et al. Interplay between CXCR4 and CCR2 regulates bone marrow exit of dendritic cell progenitors. Cell Rep (2023). https://doi.org/10.1016/j.celrep.2023.112881

3.Honda A et al. Very-long-chain fatty acids are crucial to neuronal polarity by providing sphingolipids to lipid rafts. Cell Rep (2023). https://doi.org/10.1016/j.celrep.2023.113195

4.Hao B et al. Genes and pathways associated with fear discrimination identified by genome-wide DNA methylation and RNA-seq analyses in nucleus accumbens in mice. Prog Neuropsychopharmacol Biol Psychiatry (2023). https://doi.org/10.1016/j.pnpbp.2022.110643

5.Zhao P et al. Orexin A peptidergic system: comparative sleep behavior, morphology and population in brains between wild type and Alzheimer’s disease mice. Brain Struct Funct (2022). https://doi.org/10.1007/s00429-021-02447-w

6.Mostafavi H et al. Interleukin-17 contributes to Ross River virus-induced arthritis and myositis. PLoS Pathog (2022). https://doi.org/10.1371/journal.ppat.1010185

7.Pulous FE et al. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat Neurosci (2022). https://doi.org/10.1038/s41593-022-01060-2

8.McAlpine CS et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature (2021). https://doi.org/10.1038/s41586-021-03734-6

9.Wei S et al. Aberrant Wnt signalling induces comedo-like changes in the upper hair follicle. J Invest Dermatol (2021). https://doi.org/10.1016/j.jid.2021.11.034

10.Yu LS et al. Tissue Architecture Influences the Biological Effectiveness of Boron Neutron Capture Therapy in In Vitro/In Silico Three-Dimensional Self-Assembly Cell Models of Pancreatic Cancers. Cancers (Basel) (2021). https://doi.org/10.3390/cancers13164058

11.Zhang W et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell (2021). https://doi.org/10.1016/j.cell.2021.03.011

12.Ohtsuki G. Modification of synaptic-input clustering by intrinsic excitability plasticity on cerebellar Purkinje cell dendrites. J Neurosci (2019). https://doi.org/10.1523/JNEUROSCI.3211-18.2019

13.Liau ES et al. Visualization of Motor Axon Navigation and Quantification of Axon Arborization In Mouse Embryos Using Light Sheet Fluorescence Microscopy. J Vis Exp (2018). http://dx.doi.org/10.3791/57546

14.Vinegoni C et al. Real-time high dynamic range laser scanning microscopy. Nat Commun (2016). http://dx.doi.org/10.1038/ncomms11077

15.Kwak, H et al. Sinusoidal ephrin receptor EPHB4 controls hematopoietic progenitor cell mobilization from bone marrow. J Clin Invest (2016). http://dx.doi.org/10.1172/JCI87848

Arthropods

1.Corthals K et al. Genetic atlas of hygro-and thermosensory cells in the vinegar fly Drosophila melanogaster. Sci Rep (2023). http://dx.doi.org/10.1038/s41598-023-42506-2

2.Klußmann-Fricke BJ et al. The basement membrane controls size and integrity of the Drosophila tracheal tubes. Cell Rep (2022). http://dx.doi.org/10.1016/j.celrep.2022.1107342

3.Bekkouche B et al. Modeling Nonlinear Dendritic Processing of Facilitation in a Dragonfly Target-Tracking Neuron. Front Neural Circuits (2021). http://dx.doi.org/10.3389/fncir.2021.684872

4.Bekkouche B et al. Comparison of Transparency and Shrinkage During Clearing of Insect Brains Using Media With Tunable Refractive Index. Front Neuroanat. (2020).http://dx.doi.org/10.3389/fnana.2020.599282

Zebrafish

1.Diego PD et al. Quantitative Approaches to Study Retinal Neurogenesis. Biomedicines (2021). https://doi.org/10.3390/biomedicines9091222

Tadpoles

1.Long J et al. Cereblon influences the timing of muscle differentiation in Ciona tadpoles. Proc Natl Acad Sci U S A (2023). https://doi.org/10.1073/pnas.2309989120

2.Henriet E et al. Monitoring recovery after CNS demyelination, a novel tool to de-risk pro-remyelinating strategies. Brain (2023). https://doi.org/10.1093/brain/awad051